Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа №1 г. Ивделя

				Утверждено		
приказом Л	<u>.</u>	от «	_»	20	года	
Дире	ктор	МАОУ	СОШЛ	№1 г. Ив	зделя	
-						
		Погу	удина К). A.		

Рабочая программа «Информатика в современном мире»

9 класс

Пояснительная записка

Рабочая программа «Информатика в современном мире» составлена на основе «Примерной основной общеобразовательной программы образовательного учреждения. Основная школа» (Составитель М.Н. Бородин – М. Бином. Лаборатория знаний, 2015 г.) авторской программы основного общего образования по информатике для 7-9 классов. (Составитель И.Г. Семакин, Л.А. Залогова, С.В. Русакова, Л.В. Шестакова-М. Бином. Лаборатория знаний, 2015 г.), линии УМК по информатике для 7-9 классов, И.Г. Семакина, Л.А. Залогова, С.В. Русаковой, Л.В. Шестаковой, учебник информатика 9 класс - М. Бином. Лаборатория знаний, 2016 г.,

Соответствует требованиям федерального государственного образовательного стандарт основного общего образования, учебному плану образовательного учреждения на 2020 -2021 учебный год.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты – это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.
- Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности.
- Формирование ценности здорового и безопасного образа жизни.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в реальных жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- Умение самостоятельно планировать пути достижения цели, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
- Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения
- Умения определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, устанавливать прчинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы
- Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметные результатами, формируемыми при изучении информатики в основной школе, являются:

- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

В результате освоения курса «Информатика в современном мире» за 9 класс учащиеся научатся

- понимать смысл понятия «алгоритм» и широту сферы его применения; анализировать предлагаемые последовательности команд на предмет наличия у них таких свойств алгоритма как дискретность, детерминированность, понятность, результативность, массовость;
- оперировать алгоритмическими конструкциями «следование», «ветвление», «цикл» (подбирать алгоритмическую конструкцию, соответствующую той или иной ситуации; переходить от записи алгоритмической конструкции на алгоритмическом языке к блоксхеме и обратно);
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя» и др.; понимать ограничения, накладываемые средой исполнителя и системой команд, на круг задач, решаемых исполнителем;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- составлять линейные алгоритмы, число команд в которых не превышает заданное;
- исполнять записанный на естественном языке алгоритм, обрабатывающий цепочки символов;
- исполнять линейные алгоритмы, записанные на алгоритмическом языке.

- исполнять алгоритмы с ветвлениями, записанные на алгоритмическом языке;
- понимать правила записи и выполнения алгоритмов, содержащих цикл с параметром или цикл с условием продолжения работы;
- определять значения переменных после исполнения простейших циклических алгоритмов, записанных на алгоритмическом языке;
- использовать величины (переменные) различный типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенный алгоритм, например, определять, какие результаты возможны при заданном множестве исходных значений;
- использовать логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

ученики получат возможность научиться:

- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;
- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- познакомиться с использованием в программах строковых величин;
- исполнять записанные на алгоритмическом языке циклические алгоритмы обработки одномерного массива чисел (суммирование всех элементов массива; суммирование элементов массива с определёнными индексами; суммирование элементов массива, с заданными свойствами; определение количества элементов массива с заданными свойствами; поиск наибольшего/ наименьшего элементов массива и др.);
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- разрабатывать и записывать на языке программирования эффективные алгоритмы, содержащие базовые алгоритмические конструкции.
- Познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами.

Содержание учебного предмета

Раздел 1. Управление и алгоритмы 13 часов

Кибернетика. Кибернетическая модель управления.

Понятие алгоритма и его свойства. Исполнитель алгоритмов: назначение, среда исполнителя система команд исполнителя, режимы работы.

Языки для записи алгоритмов (язык блок-схем, учебный алгоритмический язык). Линейные, ветвящиеся и циклические алгоритмы. Структурная методика алгоритмизации. Вспомогательные алгоритмы. Метод пошаговой детализации.

<u>Практика на компьютере</u>: работа с учебным исполнителем алгоритмов; составление линейных, ветвящихся и циклических алгоритмов управления исполнителем; составление алгоритмов со сложной структурой; использование вспомогательных алгоритмов (процедур, подпрограмм).

Раздел 2.Введение в программирование 15 часов

Алгоритмы работы с величинами: константы, переменные, понятие типов данных, ввод и вывод данных.

Языки программирования высокого уровня (ЯПВУ), их классификация. Структура программы на языке Паскаль. Представление данных в программе. Правила записи основных операторов: присваивания, ввода, вывода, ветвления, циклов. Структурный тип данных — массив. Способы описания и обработки массивов.

Этапы решения задачи с использованием программирования: постановка, формализация, алгоритмизация, кодирование, отладка, тестирование.

<u>Практика на компьютере</u>: знакомство с системой программирования на языке Паскаль; ввод, трансляция и исполнение данной программы; разработка и исполнение линейных, ветвящихся и циклических программ; программирование обработки массивов.

Раздел 3. Информационные технологии и общество 4 часа

Предыстория информационных технологий. История ЭВМ и ИКТ. Понятие информационных ресурсов. Информационные ресурсы современного общества. Понятие об информационном обществе. Проблемы безопасности информации, этические и правовые нормы в информационной сфере.

Раздел 4. Итоговое повторение (3ч)

Текстовые документы и их структурные единицы (раздел, абзац, строка, слово, символ). Технологии создания текстовых документов.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

$N_{\underline{0}}$	Тема (раздел) программы	Количество часов	
Π/Π			
1.	Управление и алгоритмы	12	
2.	Введение в программирование	17	
3.	Информационные технологии и общество	4	
4.	Итоговое повторение	1	
	ВСЕГО:	34	

Номер урока	Тема урока	Количество часов	Дата			
Управление и алгоритмы 12 часов						
1.	Техника безопасности и организация рабочего места. Кибернетическая модель управления.	1				
2.	Управление без обратной связи и с обратной связью.	1				
3.	Понятие алгоритма и его свойства.	1				
4.	Графический учебный исполнитель.	1				
5.	Вспомогательные алгоритмы.	1				
6.	Работа с учебным исполнителем алгоритмов: использование вспомогательных алгоритмов.					
7.	Язык блок-схем. Использование циклов с предусловием.	1				
8.	Разработка циклических алгоритмов.	1				
9.	Ветвления. Использование двухшаговой детализации.	1				
10.	Использование метода последовательной детализации для построения алгоритма.	1				
11.	Использование ветвлений	1				
12.	Управление и алгоритмы. Контрольная работа.	1				
	Введение в программирование 17 часов					
13.	Понятие о программировании.	1				
14.	Линейные вычислительные алгоритмы.	1				
15.	Построение блок-схем линейных вычислительных алгоритмов.					
16.	Возникновение и назначение языка Паскаль.					
17.	Работа с готовыми программами на языке Паскаль: отладка, выполнение, тестирование.	1				
18.	Оператор ветвления.	1				
19.	Разработка программы на языке Паскаль с использованием оператора ветвления и логических операций.	1				
20.	Циклы на языке Паскаль.	1				
21.	Разработка программ с использованием цикла с предусловием.	1				
22.	Сочетание циклов и ветвлений.	1				
23.	Одномерные массивы в Паскале.	1				
24.	Разработка программ обработки одномерных массивов.	1				
25.	Понятие случайного числа. Датчик случайных чисел в Паскале. Поиск чисел в массиве.	1				
26.	Разработка программы поиска числа в случайно сформированном массиве.	1				
27.	Поиск наибольшего и наименьшего элементов массива.	1				

28.	Сортировка массива.	1			
29.	29. Программное управление работой компьютера. Контрольная работа.				
	Информационные технологии и общество 5 часов				
30.	История ЭВМ, программного обеспечения и ИКТ.	1			
31.	Социальная информатика: информационные ресурсы, информационное общество.	1			
32.	Социальная информатика: информационная безопасность.	1			
33.	Информационные технологии и общество.	1			
34.	Информационные технологии и общество. Контрольная работа.	1			